Abstract

The melting of double-stranded DNA (dsDNA) in the presence of solvent molecules is a fundamental process with significant implications for understanding the thermal and mechanical behavior of DNA and its interactions with the surrounding environment. The solvents play an essential role in the structural transformation of DNA subjected to a pulling force. In this study, we simulate the thermal and force induced denaturation of dsDNA and elucidate the solvent dependent melting behavior, identifying key factors that influence the stability of DNA melting in presence of solvent molecules. Using a statistical model, we first find the melting profile of short heterogeneous DNA molecules in the presence of solvent molecules in Force ensemble. We also investigate the effect of solvent's strengths on the melting profile of DNA. In the force ensemble, we consider two homogeneous DNA chains and apply the force on different locations along the chain in the presence of solvent molecules. Different pathways manifest the melting of the molecule in both ensembles, and we found several interesting features of melting DNA in a constant force ensemble, such as lower critical force when the chain is pulled from the base pair close to a solvent molecule. The results provide new insights into the force-induced unzipping of DNA and could be used to develop new methods for controlling the unzipping process. By providing a better understanding of melting and unzipping of dsDNA in the presence of solvent molecules, this study provides valuable guidelines for predicting DNA thermodynamic quantities and for designing DNA nanostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call