Abstract
We present a study on the role of defects on the stability of short DNA molecules. We consider short DNA molecules (16 base pairs) and investigate the thermal as well as mechanical denaturation of these molecules in the presence of defects that occur anywhere in the molecule. For the investigation, we consider four different kinds of chains. Not only are the ratios of AT to GC different in these molecules but also the distributions of AT and GC along the molecule are different. With suitable modifications in the statistical model to show the defect in a pair, we investigate the denaturation of short DNA molecules in thermal as well as constant force ensembles. In the force ensemble, we pulled the DNA molecule from each end (keeping other end free) and observed some interesting features of opening of the molecule in the presence of defects in the molecule. We calculate the probability of opening of the DNA molecule in the constant force ensemble to explain the opening of base pairs and hence the denaturation of molecules in the presence of defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.