Abstract

The use of samarium-cobalt (Sm-Co) magnets for light force application is a relatively new concept in orthodontic tooth movement. This study reports on the forces generated by these magnets. Magnets were attached to aluminum rods mounted in a universal testing machine. The magnets were initially separated by 10 mm were moved toward each other at 2.5mm/min in repulsion or attraction, depending upon the magnetic pole orientation. The magnets were also positioned initially in contact and then moved apart at a rate of 2.5mm/min, again producing repulsion or attraction, depending upon the pole orientation. The Sm-Co magnets exhibit very large forces when in close approximation but forces decrease markedly at separations greater than 2mm. The force, P, generated between magnets is determined by their separation, d, and follows the relationship P = dn. At magnet separations of 0 to 2mm, the exponent n is equal to -0.4; at separations of 2mm to 7mm, exponent n equals -2.1 for both attraction and repulsion. Thus the classic Coulomb law of magnetic force was followed only at magnet separations of greater than 2mm. Force-separation behavior and the high cost of these magnets may not justify their routine clinical use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call