Abstract

Calcium sulfates such as anhydrite, hemihydrate, and gypsum find widespread use in building materials, implants, and tissue healing. We introduce a simple and compatible atomistic force field for all calcium sulfate phases that reproduces a wide range of experimental data including lattice parameters, surface, hydration, mechanical, and thermal properties in 1% to 5% accuracy relative to experiments. The performance is several times better than prior force fields and DFT methods, which lead to errors in structures and energies up to 100%. We explain (hkl) cleavage energies, the dynamics of (hkl) water interfaces, and new insights into molecular origins of crystal-facet specific hydration and solubility. Impressive agreement of computed and experimentally measured hydration energies is shown. The models add to the Interface force field (IFF) and are compatible with multiple force fields (CHARMM, AMBER, GROMOS, CVFF, PCFF, OPLS-AA) for property predictions of sulfate-containing materials from atoms to the large nanometer scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call