Abstract

We designed and developed a high-speed atomic force microscope (HSAFM) utilizing a force-feedback scheme for imaging large biological samples. The system collects three simultaneous images: a deflection image, a topographic image, and a force image. We demonstrated that this force-feedback HSAFM is capable of acquiring large topographic images of Escherichia coli biofilms at approximately one frame per second in air. We discuss how the self-actuating cantilever and the piezo tube follow those larger biological topographic features during the HSAFM imaging process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call