Abstract

We have recently developed a new method for directly measuring the spring constant of single molecules and molecular complexes on a real-time basis [L.A. Chtcheglova, G.T. Shubeita, S.K. Sekatskii, G. Dietler, Biophys. J. 86 (2004) 1177]. The technique combines standard force spectroscopy with a small dithering of tip. Changes in the amplitude of the oscillations are measured as a function of the pulling-off force to yield the spring constant of the complex. In this report, we present the first results of combination of this approach with the force-clamp spectroscopy. The standard atomic-force microscope has been supplemented with an electronic unit, which is capable of realizing an arbitrary force function, and permits the force-loading regime to be interrupted at any time. Using this method, the time needed to rupture a single bond can be measured as a function of the force that is required to maintain the complex in a stretched condition. The energy landscape of the avidin–biotin complex is explored and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.