Abstract

The motion of a projectile impact onto a granular target results in both the resistance force exerted on the projectile and rheology of granular media. A horizontal arrangement of cylinder quasistatically and dynamically intruding into granular media under different velocities and angles is simulated using discrete element method. Three distinguished drag force regimes are exhibited, including hydrostatic-like force independent of velocity, viscous force related to velocity, and inertial drag force proportional to the square of velocity. Meanwhile, the influence of penetration angles on drag force is examined for these three regimes, and a force model, which is related to penetration depth and angle, is proposed for quasi-static penetration. Then, flow characteristics of the granular media, such as velocity field, pressure field, packing fraction etc., are traced, and a rheology model of packing fraction and inertial number is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.