Abstract
A simple matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-matrix $F$, we say that a (0,1)-matrix $A$ has $F$ as a Berge hypergraph if there is a submatrix $B$ of $A$ and some row and column permutation of $F$, say $G$, with $G\le B$. Letting $\|A\|$ denote the number of columns in $A$, we define the extremal function $\mathrm{Bh}(m,{ F})=\max\{\|A\|\,:\, A \hbox{ }m\hbox{-rowed simple matrix and no Berge hypergraph }F\}$. We determine the asymptotics of $\mathrm{Bh}(m,F)$ for all $3$- and $4$-rowed $F$ and most $5$-rowed $F$. For certain $F$, this becomes the problem of determining the maximum number of copies of $K_r$ in a $m$-vertex graph that has no $K_{s,t}$ subgraph, a problem studied by Alon and Shikhelman.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.