Abstract

Cover crops can influence nutrient cycling in the agroecosystem. Forage radish (FR) (Raphanus sativus L. var. longipinnatus) is unique in terms of P cycling because of its high tissue P concentration, rapid growth in the fall, and rapid decomposition in winter and spring. In addition, FR produces a taproot that decays during the winter and leaves distinct holes in the surface soil. This study measured P uptake by FR and cereal rye (CR) (Secale cereale L.) cover crops; the Mehlich 3 P concentration (M3P) in bulk soil following FR, CR, and no cover crop (NC); and M3P in soil within 3 cm of FR taproot holes. Cover crop treatments of FR, CR, and NC were established at two sites each fall for three subsequent years in a cover crop–corn (Zea mays L.) silage rotation. Cover crop shoot P uptake ranged from 5.9 to 25 kg P ha−1 for FR measured in the fall and from 3.0 to 26 kg P ha−1 for CR measured in the spring. The greatest cover crop effect on bulk soil M3P was observed at the 0‐ to 2.5‐cm depth after 3 yr of cover crops, with M3P values of 101, 82, and 79 mg P kg−1 after FR, CR, and NC, respectively. Soil within 3 cm of FR taproot holes had greater M3P than FR and NC bulk soil. Further studies should be conducted to determine if FR could increase P removal rates in excessively high P soils or increase P availability in low P soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.