Abstract

The "tea-cup" attractor of a classical prey-predator-superpredator food chain model is studied analytically. Under the assumption that each species has its own time scale, ranging from fast for the prey to intermediate for the predator and to slow for the superpredator, the model is transformed into a singular perturbed system. It is demonstrated that the singular limit of the attractor contains a canard singularity. Singular return maps are constructed for which some subdynamics are shown to be equivalent to chaotic shift maps. Parameter regions in which the described chaotic dynamics exist are explicitly given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.