Abstract

We investigated the mechanism of transplacental macromolecular transport in rats on the nineteenth day of pregnancy using tracers, transmission electron microscopy and immunohistochemistry. The blood-placental barrier of full-term rat placentas was composed of a trilaminar layer of trophoblast cells that separates the fetal capillaries from the maternal blood spaces: a layer of cytotrophoblasts lining the maternal blood space and a bilayer of syncytiotrophoblast surrounding the fetal capillaries. Horseradish peroxidase, intravenously injected into the maternal circulation, was found in the maternal blood spaces, the interspaces between the cytotrophoblasts and the syncytiotrophoblast I, many pits and small vesicles in the syncytiotrophoblast I, vesicles of the syncytiotrophoblast II, fetal connective tissue and fetal capillaries. Intravenously injected ovalbumin was detected in the maternal blood spaces, a trilaminar layer and the fetal capillaries. Neonatal Fc receptor (FcRn), a receptor for IgG, was localized at the maternal side of the blood-placental barrier. These results show that the structure of the rat blood-placental barrier is quite similar to the human blood-placental barrier, and non-specific macromolecules and food allergens may penetrate through the blood-placental barrier of the full-term placenta from the maternal to fetal circulation mediated by FcRn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.