Abstract
An innovative approach aimed at disclosing the mechanism of chemical reactions occurring in solution on the millisecond time scale is presented. Time-resolved energy dispersive X-ray absorption and UV/vis spectroscopies with millisecond resolution are used simultaneously to directly follow the evolution of both the oxidation state and the local structure of the metal center in an iron complex. Two redox reactions are studied, the former involving the transformation of FeII into two subsequent FeIII species and the latter involving the more complex FeII-FeIII-FeIV-FeIII sequence. The structural modifications occurring around the iron center are correlated to the reaction mechanisms. This combined approach has the potential to provide unique insights into reaction mechanisms in the liquid phase and represents a new powerful tool to characterize short-lived intermediates that are silent to common spectroscopic techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.