Abstract

Time-resolved X-ray absorption (XAS) and UV-vis spectroscopies with millisecond resolution are used simultaneously to investigate oxidation reactions of organic substrates by nonheme iron activated species. In particular, the oxidation processes of arylsulfides and benzyl alcohols by a nonheme iron-oxo complex have been studied. We show for the first time that the pseudo-first-order rate constants of fast bimolecular processes in solution (milliseconds and above) can be determined by time-resolved XAS technique. By following the Fe K-edge energy shift, it is possible to detect the rate of iron oxidation state evolution that matches that of the bimolecular reaction in solution. The kinetic constant values obtained by XAS are in perfect agreement with those obtained by means of the concomitant UV-vis detection. This combined approach has the potential to provide unique insights into reaction mechanisms in the liquid phase that involve changes of the oxidation state of a metal center, and it is particularly useful in complex chemical systems where possible interferences from species present in solution could make it impossible to use other detection techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.