Abstract
Context. Observing the radio emission from exoplanets is among the most promising methods to detect their magnetic fields and a measurement of an exoplanetary magnetic field will help constrain the planet’s interior structure, star-planet interactions, atmospheric escape and dynamics, and habitability. Recently, circularly polarized bursty and slow emission from the τ Boötis (τ Boo) exoplanetary system was tentatively detected using LOFAR (LOW-Frequency ARray) beamformed observations. If confirmed, this detection will be a major contribution to exoplanet science. However, follow-up observations are required to confirm this detection. Aims. Here, we present such follow-up observations of the τ Boo system using LOFAR. These observations cover 70% of the orbital period of τ Boo b including the orbital phases of the previous tentative detections. Methods. We used the BOREALIS pipeline to mitigate radio frequency interference and to search for bursty and slowly varying radio signals. BOREALIS was previously used to find the tentative radio signals from τ Boo. Results. Our new observations do not show any signs of bursty or slow emission from the τ Boötis exoplanetary system. Conclusions. The cause for our non-detection is currently degenerate. It is possible that the tentative radio signals were an unknown instrumental systematic or that we are observing variability in the planetary radio emission due to changes in its host star. More radio data (preferably multi-site) and ancillary observations (e.g. magnetic maps) are required to further investigate the potential radio emission from the τ Boötis exoplanetary system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.