Abstract
After nearly three decades of discovery, many exoplanetary systems have been studied and characterized in detail with one important exception: exoplanet magnetism. Although many surveys sought to detect magnetospheric radio emissions from exoplanets to directly measure their magnetic field strengths, they have yet to reveal an unambiguous detection. However, the indirect detection of exoplanet magnetic fields by measuring their influence on their host stars via magnetic star–planet interactions has recently gained prominence as an alternative method of discovery. This third paper of the Radio Observations of Magnetized Exoplanets series presents the results of a targeted radio survey of eight nearby exoplanet-hosting systems that may engage in star–planet interactions. This survey, conducted with the Arecibo radio telescope at ∼5 GHz, has the greatest frequency coverage of any to date while providing millijansky-level sensitivity over <1 s integration times. No exoplanet-induced stellar radio bursts were detected. The orbital phase coverage of candidate systems for magnetic star–planet interactions is described, and the survey results are examined within the context of the plasma flow–obstacle paradigm and searches for star–planet interactions at other wavelengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.