Abstract
The role of recommendation systems in the diversity of content consumption on platforms is a much-debated issue. The quantitative state of the art often overlooks the existence of individual attitudes toward guidance, and eventually of different categories of users in this regard. Focusing on the case of music streaming, we analyze the complete listening history of about 9k users over one year and demonstrate that there is no blanket answer to the intertwinement of recommendation use and consumption diversity: it depends on users. First we compute for each user the relative importance of different access modes within their listening history, introducing a trichotomy distinguishing so-called `organic' use from algorithmic and editorial guidance. We thereby identify four categories of users. We then focus on two scales related to content diversity, both in terms of dispersion -- how much users consume the same content repeatedly -- and popularity -- how popular is the content they consume. We show that the two types of recommendation offered by music platforms -- algorithmic and editorial -- may drive the consumption of more or less diverse content in opposite directions, depending also strongly on the type of users. Finally, we compare users' streaming histories with the music programming of a selection of popular French radio stations during the same period. While radio programs are usually more tilted toward repetition than users' listening histories, they often program more songs from less popular artists. On the whole, our results highlight the nontrivial effects of platform-mediated recommendation on consumption, and lead us to speak of `filter niches' rather than `filter bubbles'. They hint at further ramifications for the study and design of recommendation systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have