Abstract
Neisseria gonorrhoeae, a Gram-negative obligate human pathogenic bacterium, infects human epithelial cells and causes sexually transmitted diseases. Emerging multi-antibiotic resistant gonococci and increasing numbers of infections complicate the treatment of infected patients. Here, we used an shRNA library screen and next-generation sequencing to identify factors involved in epithelial cell infection. Folliculin (FLCN), a 64 kDa protein with a tumor repressor function was identified as a novel host factor important for N. gonorrhoeae survival after uptake. We further determined that FLCN did not affect N. gonorrhoeae adherence and invasion but was essential for its survival in the cells by modulating autophagy. In addition, FLCN was also required to maintain cell to cell contacts in the epithelial layer. In an infection model with polarized cells, FLCN inhibited the polarized localization of E-cadherin and the transcytosis of gonococci across polarized epithelial cells. In conclusion, we demonstrate here the connection between FLCN and bacterial infection and in particular the role of FLCN in the intracellular survival and transcytosis of gonococci across polarized epithelial cell layers.
Highlights
Neisseria gonorrhoeae is a Gram-negative diplococcus that causes the sexually transmitted disease (STD) gonorrhea
The effect of fetal bovine serum (FBS) affects the interaction of Opa50 expressing bacteria with host cell integrin receptors (Dehio et al, 1998; Duensing and van Putten, 1998; van Putten, 1998), whereas FLCN expression has been shown to be independent of FBS (Goncharova et al, 2014) and growth factors (Laviolette et al, 2017)
N. gonorrhoeae is mainly an extracellular pathogen, colonization of epithelial cell layers can lead to gonococcal invasion and transcytosis into the subepithelial space (Criss and Seifert, 2006; Wang et al, 2008)
Summary
Neisseria gonorrhoeae is a Gram-negative diplococcus that causes the sexually transmitted disease (STD) gonorrhea. Gonorrhea is the second most frequently reported STD, which can lead to pelvic inflammatory disease and infertility. Asymptomatic infection is common and if untreated, the infection may spread to the rest of the body triggering disseminated gonorrhea. N. gonorrhoeae developed resistance to virtually all the available antibiotics used for treatment. Vaccine development has been hampered by the enormous variety of gonococcal surface factors. Identification of the host factors involved in the host-pathogen interaction is a crucial step in understanding the disease development and uncovering novel therapeutic approaches
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have