Abstract
BackgroundComputerized image analysis seems to represent a promising diagnostic possibility for thyroid tumors. Our aim was to evaluate the discriminatory diagnostic efficiency of computerized image analysis of cell nuclei from histological materials of follicular tumors.MethodsWe studied paraffin-embedded materials from 42 follicular adenomas (FA), 47 follicular variants of papillary carcinomas (FVPC) and 20 follicular carcinomas (FC) by the software ImageJ. Based on the nuclear morphometry and chromatin texture, the samples were classified as FA, FC or FVPC using the Classification and Regression Trees method.ResultsWe observed high diagnostic sensitivity and specificity rates (FVPC: 89.4% and 100%; FC: 95.0% and 92.1%; FA: 90.5 and 95.5%, respectively). When the tumors were compared by pairs (FC vs FA, FVPC vs FA), 100% of the cases were classified correctly.ConclusionThe computerized image analysis of nuclear features showed to be a useful diagnostic support tool for the histological differentiation between follicular adenomas, follicular variants of papillary carcinomas and follicular carcinomas.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have