Abstract

The role of follicle-stimulating hormone (FSH) in adult rat spermatogenesis is unclear. Although exogenous testosterone (T) restores spermatogenesis following gonadotropin-releasing hormone (GnRH) immunization or T plus estradiol (TE) treatments, an assessment of the independent action of T and FSH was not possible, as exogenous T treatment maintains serum FSH levels. We have used passive immunization against FSH to determine whether T alone is capable of reinitiating spermatogenesis after chronic and acute FSH withdrawal. Adult rats received T-filled Silastic implants 6 cm (T6) or 8 cm (T24) in length for 7 days in combination with either a polyclonal sheep antisera raised against rat FSH (FSHAb, 2 mg/kg SC daily) or control sheep immunoglobulin (ConAb) after either GnRH immunization (12 weeks) or TE treatment (9 weeks). The neutralizing capacity of the FSHAb was determined using a FSH in vitro bioassay; this analysis demonstrated that administration of FSHAb in vivo reduced FSH levels by >90%. Testes were fixed and germ cell number per testis quantified using the optical dissector. GnRH immunization reduced spermatogonia, pachytene spermatocytes, and round spermatids to 50, 13, and <1% of normal, respectively. T6 and T24 Silastic implants with the inclusion of the FSHAb did not increase the number of spermatogonia, pachytene spermatocytes, and round spermatids (50, 15, and 1% of normal, respectively). T6+ConAb treatment increased spermatogonial, pachytene spermatocyte, and round spermatid numbers to 74, 30, and 3% of normal, respectively (P < 0.05). No further increases were seen with T24 implants. TE treatment suppressed pachytene spermatocytes and round spermatids to 33 and 1% of normal, respectively (P < 0.05). T6+FSHAb treatment did not increase the number of pachytene spermatocytes and round spermatids (36 and 8%, respectively), whereas T6+ConAb treatment increased pachytene spermatocyte and round spermatid number to 50 and 28% of normal, respectively (P < 0.05). T24+FSHAb treatment increased the number of pachytene spermatocyte and round spermatids (56 and 22% of normal, respectively; P < 0.05), whereas T24+ConAb treatment increased these cells forms to 79 and 31% of normal, respectively. In conclusion, T alone is unable to restore spermatogenic cell populations in the setting of chronic FSH withdrawal. Although acute FSH withdrawal markedly impairs the restoration process, higher doses of T can partially compensate for the lack of FSH. These data suggest that FSH is important for the initial phase of spermatogenic restoration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.