Abstract

This paper deals with a limiting case motivated by contact geometry. The limiting case of a tensorial characterization of contact hypersurfaces in Kähler manifolds leads to Hopf hypersurfaces whose maximal complex subbundle of the tangent bundle is integrable. It is known that in non-flat complex space forms and in complex quadrics such real hypersurfaces do not exist, but the existence problem in other irreducible Kähler manifolds is open. In this paper we construct explicitly a one-parameter family of homogeneous Hopf hypersurfaces, whose maximal complex subbundle of the tangent bundle is integrable, in a Hermitian symmetric space of non-compact type and rank two. These are the first known examples of such real hypersurfaces in irreducible Kähler manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.