Abstract

Iron deficiency, which severely decreases the plant yield and quality, is one of the major problems of calcareous soils. Foliar applications of humic substances and/or Fe fertilizers are environmentally friendly methods to cope with Fe deficiency. The aim of this study was to investigate the combined effect of Fe/nano Fe and humic/fulvic acid-based biostimulant foliar applications on the Fe content and plant growth parameters of spinach. Treatment solutions were prepared either by mixing a common Fe fertilizer, FeSO4·7H2O, with different commercial biostimulants (Fulvic-based: Fulvagra®, Fulvagra®WSG; Humic-based: HS300®, Humin Fe® and Liqhumus®, Grevenbroich, Germany) or by mixing nano ferrihydrite with different ratios of fulvic substance (FA-50, FA-75, and FA-100) and humic acid (Nano Iron). Growth parameters (plant fresh and dry weights, plant dry matter, root fresh and dry weights, root dry matter, leaf number per plant, and leaf area); chlorophyll reading value (SPAD); chlorophyll (a,b, and total) and carotenoid contents; and leaf and root mineral contents (N, P, K, Ca, Mg, S, Cu, Mn, Zn, B, active Fe, and total Fe) of samples were determined. Our results showed that foliar application of biostimulants together with Fe sources improved the nutrient uptake, chlorophyll contents, growth characteristics, and yield; however, not all humic substances had the same effect. When all parameters were considered, Fulvagra treatment—which contained 17% fulvic acid and microorganisms in its content together with 20 mM FeSO4·7H2O—was the most effective application, followed by FA100 treatment containing fulvic acid and 20 mM nano ferrihydrite. This finding indicates that fulvic acid containing biostimulants is more effective in foliar applications than humic-based biostimulants against Fe deficiency due to their low molecular weight which enables better penetration into the leaves. In conclusion, foliar applications of fulvic substances together with Fe fertilizers can be used to increase the Fe uptake of crops and the yields under Fe-deficient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.