Abstract
Boron (B) toxicity is one of the limiting factors affecting plant growth. Previous studies showed that silicon (Si) application could alleviate B toxicity. However, there is limited information on how Si alleviates B toxicity in rice, particularly nano-silicon (SiNP). Therefore, the current study aimed to explore the foliar function of SiNP in the reduction of B toxicity in rice. The results showed that B toxicity significantly hampered root and shoot development. However, SiNP application increased root and shoot lengths by 14.29% and 29.67%, respectively, compared to B toxicity treatment. Moreover, SiNP increased fresh weight (FW) of root (28.02%) and shoot (34%) and enhanced dry weight (DW) of root (65.13%), and shoot (26.87%), compared to B toxicity treatment. The application of SiNP decreased the translocation of B to leaves and promoted B adsorption to leaf cell wall. In roots, SiNP triggered high B accumulation and Fourier infrared spectroscopy (FTIR) also suggested higher peak values of functional groups (pectin), indicating that cell wall polysaccharides can adsorb high concentration of B. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) investigations showed that SiNP treated roots had a well-arranged structure of alkali-soluble pectin (ASP), and ultrastructure of root was well organized. Cell wall adsorbed more than 80% of total B. All of these results suggest that SiNP can alleviate B toxicity in rice seedlings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have