Abstract

The present paper considers the time evolution of a charged test particle of mass m in a constant temperature heat bath of a second charged particle of mass M. The time dependence of the distribution function of the test particles is given by a Fokker-Planck equation with a diffusion coefficient for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. For the mass ratio m/M→0, the steady distribution is a Kappa distribution which has been employed in space physics to fit observed particle energy spectra. The time dependence of the distribution functions with some initial value is expressed in terms of the eigenvalues and eigenfunctions of the linear Fokker-Planck operator and also interpreted with the transformation to a Schrödinger equation. We also consider the explicit time dependence of the distribution function with a discretization of the Fokker-Planck equation. We study the stability of the Kappa distribution to Coulomb collisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call