Abstract

The conventional way to search for long-lived CHArged Massive Particles (CHAMPs) is to identify slow (small $\beta$) tracks using delayed time of flight and high ionization energy loss. But at the 7-14 TeV center of mass energy of the LHC, a CHAMP may be highly boosted (high $\beta$) and therefore look more like a minimum ionizing particle, while for high momentum muons (more than $\sim$500 GeV/c) the radiative effect dominates energy deposition. This suggests a new strategy to search for CHAMPs at the LHC. Using energy deposition from different detector components, we construct a boosted decision tree discriminant to separate high momentum CHAMPs from high momentum muons. This method increases substantially the CHAMP search potential and it can be used to distinguish possible di-CHAMP or CHAMP-muon resonance models from di-muon resonance models. We illustrate the new method using a mGMSB model and a recently proposed di-CHAMP model and we give updated CHAMP mass limits for these two models using the recent CDF CHAMP results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call