Abstract

Abstract During labour, foetal monitoring enables clinicians to prevent potential adverse outcomes, whose surveillance procedure is commonly based on analysis of cardiotocographic (CTG) signals. Unfortunately, this procedure is difficult because it involves human interpretation of highly complex signals. In order to improve the CTG assessment, different approaches based on signal processing techniques have been proposed. However, most of them do not consider the progression of the foetal response over time. In this work, we propose to study such progression along the foetal heart rate (FHR) signal by using spectral analysis based on time-varying autoregressive modelling. The main idea is to investigate if a particular FHR signal episode in the time-domain reflects dynamical changes in the frequency-domain that can help to assess the foetal condition. Results show that each FHR deceleration leaves a particular time-varying frequency signature described by the spectral energy components which could help to distinguish between a normal and a pathological foetus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.