Abstract

Abstract This work focuses on investigating an optimal foetal heart rate (FHR) signal segment to be considered for automatic cardiotocographic (CTG) classification. The main idea is to evaluate a set of signal segments of different length and location based on their classification performance. For this purpose, we employ a feature extraction operation based on two signal processing techniques, such as the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and time-varying autoregressive modelling. For each studied segment, the features are extracted and evaluated based on their performance in CTG classification. For the proposed evaluation, we make use of real CTG data extracted from the CTU-UHB database. Results show that the classification performance depends considerably on the selected FHR segment. Likewise, we have found that an optimal FHR segment for foetal welfare assessment during labour corresponds to a segment of 30 minutes long.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.