Abstract

This paper presents the numerical simulation and experiments on focusing low-frequency ultrasonic waves in a 2-D covered channel above acoustic metamaterials composed of the periodic array of Helmholtz resonators, in which the refractive index can be in a negative value. The 2-D channel above the acoustic metamaterials is covered by a plate to limit the area affected by the negative refractive index metamaterials. Ultrasonic waves propagated in the 2-D covered channel are found to be highly dependent on input frequency and the designed Helmholtz resonator structure, where its negative refractive index causes the focusing phenomenon in this channel. From the numerical simulation and experiments, an amplitude focus spot is observed in the peak-to-peak of the time domain signal and frequency response at 125 kHz by mapping a pressure field in the 2-D covered channel. Different focal points with several input frequencies are also identified. Our research demonstrates the possibility of applying the designed lens based on acoustic metamaterials to improve the focusing effect in ultrasonic testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.