Abstract

The control of growth, patterning, and differentiation of the mammalian forebrain has a large genetic component, and many human disease loci associated with cortical malformations have been identified. To further understand the genes involved in controlling neural development, we have performed a forward genetic screen in the mouse (Mus musculus) using ENU mutagenesis. We report the results from our ENU screen in which we biased our ascertainment toward mutations affecting neurodevelopment. Our screen had three components: a careful morphological and histological examination of forebrain structure, the inclusion of a retinoic acid response element-lacZ reporter transgene to highlight patterning of the brain, and the use of a genetically sensitizing locus, Lis1/Pafah1b1, to predispose animals to neurodevelopmental defects. We recovered and mapped eight monogenic mutations, seven of which affect neurodevelopment. We have evidence for a causal gene in four of the eight mutations. We describe in detail two of these: a mutation in the planar cell polarity gene scribbled homolog (Drosophila) (Scrib) and a mutation in caspase-3 (Casp3). We find that refining ENU mutagenesis in these ways is an efficient experimental approach and that investigation of the developing mammalian nervous system using forward genetic experiments is highly productive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.