Abstract

The study of thermal effects, both classical and quantum, at cryogenic temperatures requires the use of on-chip, local, high-sensitivity thermometry. Carbon-platinum composites fabricated using focused ion beam (FIB) assisted deposition form a granular structure which is shown in this study to be uniquely suited for this application. Carbon-platinum thermometers deposited using a 24 pA ion beam current have high sensitivities below 1 K, comparable to the best cryogenic thermometers. In addition, these thermometers can be accurately placed to within 10s of nanometers on the chip using a mask-free process. They also have a weak magnetic field dependence, < 3% change in resistance with applied magnetic fields from 0 to 8 T. Finally, these thermometers are integrable into a variety of nanoscale devices due to the existing wide spread use of FIB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.