Abstract

We demonstrate the fabrication of sharp nanopillars of high aspect ratio onto specialized atomic force microscopy (AFM) microcantilevers and their use for high-speed AFM of DNA and nucleoproteins in liquid. The fabrication technique uses localized charged-particle-induced deposition with either a focused beam of helium ions or electrons in a helium ion microscope (HIM) or scanning electron microscope (SEM). This approach enables customized growth onto delicate substrates with nanometer-scale placement precision and in situ imaging of the final tip structures using the HIM or SEM. Tip radii of <10 nm are obtained and the underlying microcantilever remains intact. Instead of the more commonly used organic precursors employed for bio-AFM applications, we use an organometallic precursor (tungsten hexacarbonyl) resulting in tungsten-containing tips. Transmission electron microscopy reveals a thin layer of carbon on the tips. The interaction of the new tips with biological specimens is therefore likely very similar to that of standard carbonaceous tips, with the added benefit of robustness. A further advantage of the organometallic tips is that compared to carbonaceous tips they better withstand UV-ozone cleaning treatments to remove residual organic contaminants between experiments, which are inevitable during the scanning of soft biomolecules in liquid. Our tips can also be grown onto the blunted tips of previously used cantilevers, thus providing a means to recycle specialized cantilevers and restore their performance to the original manufacturer specifications. Finally, a focused helium ion beam milling technique to reduce the tip radii and thus further improve lateral spatial resolution in the AFM scans is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.