Abstract

Capacitively coupled wafer-bearing cathodes are widely used in etching and deposition processes. Uniform electric field and plasma density across the wafer surface are necessary for process control all the way to the edge of the wafer. Terminating structures at the wafer edge such as focus rings are used to improve uniformity and minimize costly edge exclusion. The focus ring can be viewed as an arbitrary impedance element at the wafer edge that balances the sheath voltage above it and the region above the wafer, minimizing field variation at the wafer edge. To validate this assumption, a one-dimension circuit model with focus rings was developed. The simulations were compared to experimental results measured using hairpin probe, VI probe, and a retarding field energy analyzer (Impedans RFEA). It was found that the focus ring coupling acts as a voltage divider only in high voltage cases, and the sheath voltage drop over the focus ring will increase in low voltage cases and does not rigorously follow the voltage divider model typically used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.