Abstract

This article represents the findings from the qualitative portion of a mixed methods study that investigated the impact of middle school students’ spatial skills on their plate tectonics learning while using a computer visualization. Higher spatial skills have been linked to higher STEM achievement, while use of computer visualizations has mixed results for helping various students with different spatial levels. This study endeavors to better understand the difference between what high and low spatial-skilled middle school students notice and interpret while using a plate tectonic computer visualization. Also, we examine the differences in the quantity and quality of students’ spatial language. The collected data include student spatial scores, student interviews, screencasts, and online artifacts. The artifacts were students’ answers to questions inserted in an online curriculum (GEODE) with the embedded computer visualization (Seismic Explorer). Students were asked what they “noticed” during interviews and in the curriculum. Typed student answers and interviews were analyzed for types and quantity of spatial words. Analysis of typed answers and interviews indicated that there are differences in the number and types of spatial words used by high or low spatial students. Additionally, high spatial learners talk about depth, notice patterns in data and are more likely to make a hypothesis to explain what they see on the screen. Findings suggest that students go through an iterative cycle of noticing and interpreting when using a scientific model. Overall, results show a significant positive relationship between spatial skills and what students notice while learning plate tectonics. An explanation for the increased gain in plate tectonics comprehension is that students with higher spatial skills notice more, so they are able to interpret more details of the model. This finding implies that students with low spatial skills do not benefit as much from use of a computer visualization and will need more scaffolding in order to interpret details in the computer visualization.

Highlights

  • Thinking spatially is complex as it involves various aspects of spatial abilities including mental rotation of objects, perception of one’s location in a setting, and visualization of how material would fold or unfold (Liben and Titus 2012; National Research Council 2006)

  • In the second study, we investigated the intersection of student spatial skills based on the Spatial Reasoning Instrument (Ramful et al 2017) with what students noticed in interviews and in typed answers in curriculum while using the Seismic Explorer computer visualization during a middle school earth science class

  • The learning context The computer-based visualization used in this study was part of an online middle school curriculum module focused on the guiding question, “What will Earth look like in 500 million years?" The module was developed as part of Geological models for Explorations of Dynamic Earth (GEODE) project

Read more

Summary

Background

Thinking spatially is complex as it involves various aspects of spatial abilities including mental rotation of objects, perception of one’s location in a setting, and visualization of how material would fold or unfold (Liben and Titus 2012; National Research Council 2006). In the second (main) study, we investigated the intersection of student spatial skills based on the Spatial Reasoning Instrument (Ramful et al 2017) with what students noticed in interviews and in typed answers in curriculum while using the Seismic Explorer computer visualization during a middle school earth science class. The learning context The computer-based visualization used in this study was part of an online middle school curriculum module focused on the guiding question, “What will Earth look like in 500 million years?" The module was developed as part of Geological models for Explorations of Dynamic Earth (GEODE) project. SE is a robust application that provides visualization requiring many spatial skills: spatial orientation, mental rotation, and spatial visualization Students must use these skills to be able to interpret the spatial nature of SE to have the most sophisticated understanding possible of the earthquake/volcano/plate data. The analysis of the affordances of the tool demonstrates the interrelationship between this computer visualizations and spatial skills

Methods
11–3 LYNSEY
Results
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.