Abstract

We introduce and describe in second quantization a family of particle species with \(p=2,3,\dots\) exclusion and \(\theta=2\pi/p\) exchange statistics. We call these anyons Fock parafermions, because they are the particles naturally associated to the parafermionic zero-energy modes, potentially realizable in mesoscopic arrays of fractional topological insulators. Their second-quantization description entails the concept of Fock algebra, i.e., a Fock space endowed with a statistical multiplication that captures and logically correlates these anyons' exclusion and exchange statistics. As a consequence normal-ordering continues to be a well-defined operation. Because of its relevance to topological quantum information processing, we also derive families of self-dual representations of the braid group for any $p$, with the Gaussian representation being a special case. The self-dual representations can be realized in terms of local quadratic combinations of either parafermions or Fock parafermions, an important requisite for physical implementation of quantum logic gates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call