Abstract

Focal vibration is an effective intervention for the management of spasticity. However, its neuromechanical effects, particularly how tonic vibration reflex is induced explicitly, remain implicit. In this paper, we utilize a high-speed camera and a method of image processing to quantify the muscle vibration rigorously and disclose the neuromechanical mechanism of focal vibration. The vibration of 75 Hz is applied on the muscle belly of the biceps brachii and muscle responses are captured by a high-speed camera in profile. The muscle silhouettes are identified by the Canny edge detector to represent the stretch of muscle fibers, and the consistency between the muscle stretch and profile deformation has been confirmed by the magnetic resonance imaging in advance. Oscillations of muscle points discretized by pixels are identified by the fast Fourier transformation, respectively, and results demonstrate that focal vibration stretches muscle by producing muscle waves. Specifically, each point vibrates harmonically, and, given the linear phase modulation with transverse position, the muscle vibration propagates as traveling waves. The propagation of muscle waves is associated with muscle stretch, whose frequency is the same with the vibrator due to the curved baseline, and thus induces the tonic vibration reflex via spinal circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call