Abstract

Accurate breast lesion segmentation in ultrasound images helps radiologists to make exact diagnoses and treatments, which is important to increase the survival rate of breast cancer patients. Recently, deep learning-based methods have demonstrated remarkable results in breast lesion segmentation. However, the blurry breast lesion boundaries and noise artifacts in ultrasound images still limit the performance of the deep learning-based methods. In this paper, we propose a novel segmentation network equipped with a focal self-attention block for improving the performance of breast lesion segmentation. The focal self-attention block can incorporate fine-grained local and coarse-grained global information. The fine-grained local information is useful to enhance features of breast lesion boundaries, while the coarse-grained global information effectively reduces noise interference. To verify the performance of our network, we implement breast lesion segmentation on our collected dataset of 9836 ultrasound images. The results demonstrate that the focal self-attention block enhances features of breast lesion boundaries and improves the accuracy of breast lesion segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.