Abstract
Focusing properties of the cylindrical vector axisymmetric Bessel-modulated Gaussian beam with quadratic radial phase dependence (QBG beam) in high numerical aperture parabolic mirror system is investigated theoretically by vector diffraction theory. Results show that intensity distribution in focal region can be altered considerably by beam parameter μ and polarization angle. The tightly focused cylindrically polarized axial symmetric Bessel-modulated Gaussian beams by a high numerical aperture parabolic mirror have possible applications in particle acceleration, optical trapping and manipulating, single molecule imaging and high resolution imaging microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.