Abstract
Based on vectorial diffraction theory, the effect of annular apodization on tightly focused azimuthally polarized Bessel-modulated Gaussian beam (QBG) are investigated theoretically. The numerical results show that the intensity distribution in focal region of the incident beam can be altered considerably by changing beam parameter (μ) and introducing annular apodization (δ). Beam parameter induces the focal splitting in transverse direction, while annular apodization leads to change in focal pattern along optical axis of the focusing system. More interesting, the focal splitting may be in continuous in certain case of incident beam propagating through aligned optical system which is suitable for application such as optical manipulation and optical trapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Optik - International Journal for Light and Electron Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.