Abstract

We have determined 151 high quality focal mechanism solutions for earthquakes that occurred between January 2005 and December 2006 in and around the Atotsugawa fault area in central Honshu, Japan. We used P-wave first motion polarity data observed by a dense temporary seismic observation conducted in the area by the Japanese University Group. The types of obtained focal mechanism solutions are predominantly strike-slip, however, some earthquakes exhibit reverse- and normal-fault type focal mechanisms. Without regard to faulting type, the averaged directions of compressional (P) and extensional (T) axes are rather uniform, N70°W and N16°E, respectively. We found that not a small number of normal-fault type earthquakes occurred in a small cluster near the central part of Atotsugawa fault, and in a very short period from the end of March to the beginning of April in 2005. In order to estimate stress field around the fault, we applied a stress tensor inversion method to the focal mechanism solutions. Both the maximum principal stress (σ1) and the minimum principal stress (σ3)axes are almost horizontal and trend N72°W to N77°W and N14°E to N20°E, respectively. The direction of σ1 and the fault trace form an angle of 43°–48°. It is clear that the σ1 axis is neither perpendicular nor parallel to the Atotsugawa fault, indicating strong coupling of fault. The stress tensor inversion also suggests local extensional stress field at a deep (>8 km) central part of Atotsugawa fault. We present a hypothesis that the extensional stress is caused locally in a transition zone from the fluid-rich aseismic creep zone to the seismogenic zone that is interpreted as an asperity ruptured by the 1858 Hietsu Earthquake (M = 7.0).

Highlights

  • Recent observation by the nationwide dense GPS array (GEONET by the Geographical Survey Institute of Japan) detected a zone with high strain rate of E-W contraction in the area from Niigata to Kobe in central Japan

  • They showed that both strike-slip and reverse faulting are the common focal mechanisms in the northern Hida region, they pointed out the spatial variation along the Atotsugawa fault

  • High quality 151 focal mechanism solutions were determined by using a P-wave first motion polarity data observed between January 2005 and December 2006 by a dense temporary seismic network in the Atotsugawa fault area, central Japan

Read more

Summary

Introduction

Recent observation by the nationwide dense GPS array (GEONET by the Geographical Survey Institute of Japan) detected a zone with high strain rate of E-W contraction in the area from Niigata to Kobe in central Japan. This zone is called the Niigata-Kobe Tectonic Zone (NKTZ) (e.g., Sagiya et al, 2000). Earthquakes are the strain release process by sudden slip of fault, the understanding of strain accumulation mechanisms will provide a clue to clarify the earthquake generation mechanisms. The research in the NKTZ is expected to contribute to establish a general model of seismogenic process in the Japanese Islands. Copyright c The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call