Abstract

The properties of foams stabilized by hydrophobized titanium oxide and silica are studied. It was shown that when hexylamine was added to silica suspensions (in an amount of ≥ 10 mmol/l), the values of the hydrogen index corresponded to the alkaline region. Moreover, the stability of such foams increases with the increasing concentration of hexylamine and an increase in the relative degree of hydrophobization to ng = 2.75 mmol/g. However, rapid destruction of disperse systems is possible when a certain degree of hydrophobization is achieved (for example, ng≥3 in aerosil suspensions), which is due to aggregation of particles in the initial suspension. The dependence of the lifetime of these dispersed systems on the hydrogen index (pH) is shown. The most stable disperse systems were formed at the pH value of 5, which is close to the isoelectric point of the oxide. Foams obtained from the suspension of the composition: 20% titanium oxide + 76.6 mmol/l hexylamine remained stable for four days or more at pH = 5 and a change in the relative hydrophobicity of the surface (ng) from 0.383 to 1.27 mmol/g. With a significant increase in the degree of hydrophobization of the surface to 4.6 mmol/g and the same pH value, foaming was insignificant (the layer height (h) was 0.2 cm) and life time t≈10 sec. Probably fixing the particles at the liquid-gas interface is an irreversible process only when a certain degree of hydrophobicity is achieved. To explain the possible causes of change stability of the foam containing the titanium dioxide from the pH we have investigated the distribution of particles according to their sizes by the method of sedimentation analysis. It was found that at pH=10 the fractional composition of the suspension with an average radius of 3 µm was equal to 50%, at the same time the maximum radius was 21 µm; the value of the wetting angle of the particles was equal to 40.8º. In an acidic medium (pH=2-3) and at pH=5, the fraction content with an average particle radius of 5 µm was 29% and 30%, respectively. However, low (14.7º) values of the wetting angle at pH=2 can cause low stability of foams in an acidic environment. Highly stable foams were obtained by changing the viscosity of the dispersion medium in suspensions of hydrophobized titanium oxide. When adding glycerol to the suspension composition: 9.0% titanium dioxide + 0.7% hexylamine, pH=9, gel foam was obtained, which was not destroyed within 10 days. However, in an acidic medium with the addition of the same amount of glycerol, the formation of a stable dispersed system was not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call