Abstract
AbstractMilk proteins, integral to stable foam production, exhibit seasonal and type-dependent variations. Understanding the impact of protein levels with and without fat on foaming properties is essential for selecting suitable milk types and controlling the foaming process. In this study, we employed steam injection and mechanical mixing to assess foamability, foam stability, and foam structure of (1) reconstituted skim milk powder dispersions (1.5–15% solids concentration, corresponding to 0.5–5.0% protein), (2) reconstituted whole milk powder and commercial whole milk dispersions (0.5% protein), and (3) whole milk with added skim milk powder and milk protein concentrate (3.5 and 4% protein) and butter milk powder (0.5 and 1% total solid content). Results reveal that increasing solids concentration from 1.5 to 15% significantly increased lactose content, viscosity, and surface tension. However, these changes did not impact foamability or foam stability, while slightly decreasing air bubble size. At 0.5% protein, skim milk powder dispersions demonstrated higher foam volume (16 times greater) and more stable foam compared to reconstituted whole milk powder and whole milk dispersions, despite similar foam structure and appearance. These findings emphasize the substantial influence of the protein/fat ratio on milk’s foaming properties. Additionally, the addition of skim milk powder, milk protein concentrate, or butter milk powder at the investigated content did not affect the foaming properties of whole milk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.