Abstract
A model, called pressure-driven growth, is analysed for propagation of a foam front through an oil reservoir during improved oil recovery using foam. Numerical simulations of the model predict, not only the distance over which the foam front propagates, but also the instantaneous front shape. A particular case is studied here in which the pressure used to drive the foam along is suddenly increased at a certain point in time. This transiently produces a concave front shape (seen from the domain ahead of the front): such concavities are known to be delicate to handle numerically. As time proceeds however, the front evolves back towards a convex shape, and this can be predicted by a long-time asymptotic analysis of the model. The increase in driving pressure is shown to be beneficial to the improved oil recovery process, because it gives a more uniform sweep of the oil reservoir by the foam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.