Read

Fly Ash Nanoparticle-Stabilized CO2-in-Water Foams for Gas Mobility Control Applications

Publication Date Sep 28, 2015

Abstract

Abstract The goal of this work is to develop a novel way of beneficially utilizing two main waste products from coal power-generation plants – carbon dioxide and fly ash – by generating fly ash nanoparticle-stabilized CO2 foam for CO2 EOR mobility control. First, as the grain size of fly ash is generally too large for injection into reservoirs, it was reduced to nano-size by the ball-milling process. Second, dispersion stability analysis was performed to evaluate a suitable dispersing agent for fly ash nanoparticles (FA-NP). A range of surfactants (anionic, cationic, and non-ionic) was used in dilute concentrations. Surfactants were screened based on particle-hydrodynamic diameters and polydispersity index of the dispersion as measured by dynamic light scattering. Third, foam flow experiments were performed using combinations of FA-NP and various surfactants. Aqueous foam was created in-situ by coinjecting the FA-NP and/or surfactants with liquid CO2 through a sandpack at a fixed foam quality. Foam texture, as seen in the view-cell, was used to screen suitable surfactants that stabilized strong foams. Finally, the foam flow experiments were conducted in a Berea sandstone core. Pressure drop across the core was measured to estimate the achieved foam resistance factor and the apparent viscosity of the generated foam. Nano-milling and thermal treatment processes were able to yield thermally-treated fly ash (TTFA) nanoparticles with an average size of 180 nm. Dispersion stability analysis revealed that anionic and...

Concepts

Foam Flow Experiments Fly Ash Anionic Surfactant Nanoparticles In Porous Media Size Of Fly Ash Fly Ash Nanoparticles Dispersion Stability Analysis Dilute Concentrations Berea Sandstone Core Absence Of Oil

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.