Abstract

Many oil reservoirs are at high temperatures and contain brines of high salinity and hardness. The focus of this work is to develop robust foams stabilized by a mixture of nanoparticles and surfactants for such reservoirs. Two types of silica nanoparticles (Si-NP1, Si-NP2) with different grafted low molecular weight ligands/polymers were used. First, aqueous stability analysis of these nanoparticle dispersions were conducted at high-temperature (80 °C) and high-salinity conditions (API Brine; 8 wt% NaCl and 2 wt% CaCl2). The screened nanoparticles were used in combination with an anionic surfactant. Second, bulk foam and emulsion stability tests were performed to investigate their performance in stabilizing the air–water and oil–water interface, respectively. Third, foam flow experiments in the absence of oil were performed to characterize the foam rheology. Finally, oil displacement experiments were conducted in an in-house, custom-built 2D sand pack with flow visualization. The sand pack had two layers of different mesh size silica sand which yielded a permeability contrast of 6:1. Brine floods followed by foam floods (80% quality) were conducted, and foam flow dynamics were monitored. The grafting of low molecular weight polymers/ligands on silica nanoparticle surfaces resulted in steric stabilization under high-temperature and high-salinity conditions. Foam flow experiments revealed a synergy between Si-NP2 and surfactant in stabilizing foam in the absence of crude oil. In the oil displacement experiments in the layered sand packs, the waterflood recoveries were low (~ 33% original oil in place) due to channeling in the top high-permeability zone, leaving the bottom low-permeability zone completely unswept. Foam flooding with just the surfactant leads to a drastic improvement in sweep efficiency. It resulted in an incremental oil recovery as high as 43.3% OOIP. Different cross-flow behaviors were observed during foam flooding. Significant cross-flow of oil from low-permeability zone to high-permeability zone was observed for the case of surfactant. Conversely, the Si-NP2-surfactant blend resulted in no cross-flow from the low-permeability region with complete blocking of the high-permeability region due to the formation of in situ emulsion. Such selective plugging of high-perm zones using nanoparticles with tailored surface coating and concentration has significant potential in recovering oil from heterogeneous reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.