Abstract

This paper presents FluxTracer, an advanced open source computer tool to assist in the analysis, design, and optimization of solar concentrators and receivers. FluxTracer is a postprocessor for Monte Carlo ray tracers used to simulate the optical behavior of solar concentrating systems. By postprocessing the rays generated by the ray tracer, FluxTracer can partition into volumetric pixels (voxels) a region of interest in three-dimensional (3D) space defined by the user and compute for each voxel the radiant power density of the concentrated solar radiation. Depending upon the set of rays provided by the ray tracer, it may be able to integrate the radiant power density in every voxel over time. The radiant energy density analysis described is just one of the analyses that FluxTracer can carry out on the set of rays generated by the ray tracer. This paper presents the main analyses that FluxTracer can provide. It also presents examples of how the information provided by FluxTracer can be used to assist in the analysis, design, and optimization of solar concentrators and receivers. FluxTracer is the first of a series of components of an open-source computational framework for the analysis, design, and optimization of solar concentrators and receiver, being developed by The Cyprus Institute (CyI) and the Australian National University (ANU).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.