Abstract
Atmospheric reactive nitrogen (Nr) deposition has caused serious damage to the terrestrial and freshwater ecosystems and also affected human health. Measuring temporal and spatial characteristics of Nr deposition is critical for proposing control strategy to decrease negative effects. We investigated the fluxes of ammonia nitrogen (NH4-N) and nitrate nitrogen (NO3-N) in both dry and wet deposition from October 2017 to September 2020 at six sites around the Danjiangkou reservoir. The results showed that the fluxes of dissolved inorganic nitrogen (DIN) decreased from 24.39 kg ha−1 yr−1 (2017–2018) to 16.11 kg ha−1 yr−1 (2019–2020) for dry deposition, and from 19.71 kg ha−1 yr−1 (2017–2018) to 12.29 kg ha−1 yr−1 (2019–2020) for wet deposition. Both NH4-N and NO3-N in wet deposition exhibited significant (P < 0.01) differences among four seasons, and were markedly influenced by the precipitation. The fluxes of NO3-N deposition showed significant (P < 0.05) difference among six samples. Dry component contributed more to total DIN deposition, and NH4-N was the dominant species in DIN deposition. The ratios of NH4-N to NO3-N in four seasons were higher than 2. A positive matrix factorization (PMF) model estimated that the factors of agriculture and fossil fuel combustion accounted for 77.1 % and 17.0 %, respectively, to the dry NH4-N deposition; and that the factors of agricultural source and biomass burning accounted for 56.2 % and 21.1 %, respectively, to the wet NH4-N deposition. The DIN deposition contributed to 7.7 % of the total Nr input into the reservoir, and the contribution of DIN deposition to the increase in the nitrogen concentration (ΔN) of the Danjiangkou reservoir was 0.13 mg L−1 yr−1. The dry DIN deposition was significantly correlated with the concentration of nitrogen in Danjiangkou reservoir (P < 0.01). This study suggested that the control measures of agricultural activity were essential to reduce Nr deposition, and to decrease the potential risks of water pollution in the reservoir. Furthermore, more long-term study is necessary to understand the relation between control measures, Nr deposition and water quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.