Abstract

We derive explicit representation formulas for the computation of flux intensity functions for mixed boundary value problems for the Poisson equation in axisymmetric domains with edges. We rely on the decomposition of the boundary value problems in three dimensions by means of partial Fourier analysis with respect to the rotational angle into boundary value problems in the two‐dimensional meridian domain of . Utilizing smooth cutoff functions, the solutions of the reduced problems are analyzed semi‐analytically near corners of the plane meridian domain, and the edge flux intensity functions are constructed via Fourier synthesis and convergence analysis. The formulas are also applicable in the case of crack fronts. The constructive nature of the formulas provides in a straightforward way an efficient strategy for the accurate computation of edge flux intensity functions in axisymmetric domains. A demonstration example that illustrates the application of the formulas is presented. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.