Abstract
A high-strength low-alloy (HSLA) steel plate of 10 mm thickness underwent submerged arc welding with enhanced fluxes containing additional titanium oxide (TiO2) or vanadium oxide (V2O5). The addition of TiO2 led to the development of a finer acicular ferrite structure but coarsening the carbide and martensite/austenite (M/A) constituents, which marginally improved the hardness, tensile strength, and ductility of weld metal. Conversely, incorporating V2O5 facilitated a substantial vanadium absorption (0.7 wt. %) in the weld metal, giving rise to a distinctive acicular microstructure less reliant on ferrite nucleation at non-metallic inclusions than conventional acicular ferrite. The distinctive microstructure, unique to vanadium steels, combined lath bainite with irregularly shaped granular bainite. The resultant dual-mode bainitic structure, coupled with a more uniform distribution of refined microphase constituents, outperformed the conventional acicular ferrite, delivering more than 20% and 13% improvements in yield and tensile strengths respectively, as evidenced by transverse tensile tests on the weld metals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have