Abstract

Single-crystal indium tin oxide (ITO) nanotrees with engineered trunk and branch orientations are grown using a recently reported technique combining vapor–liquid–solid growth and glancing angle deposition (VLS-GLAD). In this work, three unique capabilities of VLS-GLAD are demonstrated for the first time: (i) nanotrees are aligned without epitaxy, (ii) branches can be placed on select faces of the nanotree trunk, and (iii) branch orientation can be modified along the height of nanotrees. VLS-GLAD uses a collimated obliquely incident vapor flux to place material on desired growth surfaces, resulting in preferential branch growth on the sides of the nanotree trunk exposed to the flux at the time of nucleation. Dynamic control of the azimuthal orientation of the flux relative to a growing nanotree enables the preferential orientation of branches to be modulated along the height of the nanotree, which we have demonstrated with both continuous and discrete substrate rotation schemes. An electron diffraction investigation confirms that the nanotrees can be considered as a single crystal, with continuity of the crystal structure across the trunk–branch interface. Crystal texture of the films is characterized by X-ray diffraction pole figures. By limiting the flux to discrete positions, the films develop both out-of-plane and in-plane crystal alignment (biaxial texture). We interpret the in-plane orientation as the result of competitive growth, which leads to evolutionary selection of similarly oriented structures. Control over in-plane nanotree crystal alignment and height-dependent branch orientation should increase the achievable complexity in three-dimensional nanowire architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.