Abstract
The scientific interest and technological relevance of biaxially textured polycrystalline thin films stem from their microstructure that resembles that of single crystals. To explain the origin and predict the type of biaxial texture in off-normally deposited films, Mahieu et al. have developed an analytical model [S. Mahieu et al., Thin Solid Films 515, 1229 (2006)]. For certain materials, this model predicts the occurrence of a double in-plane alignment, however, experimentally only a single in-plane alignment has been observed and the reason for this discrepancy is still unknown. The model calculates the resulting in-plane alignment by considering the growth of faceted grains with an out-of-plane orientation that corresponds to the predominant film out-of-plane texture. This approach overlooks the fact that in vapor condensation experiments where growth kinetics is limited and only surface diffusion is active, out-of-plane orientation selection is random during grain nucleation and happens only upon grain impingement. Here, we compile and implement an experiment that is consistent with the key assumptions set forth by the in-plane orientation selection model by Mahieu et al.; a Cr film is grown off-normally on a fiber textured Ti epilayer to pre-determine the out-of-plane orientation and only allow for competitive growth with respect to the in-plane alignment. Our results show unambiguously a biaxially textured Cr (110) film that possesses a double in-plane alignment, in agreement with predictions of the in-plane selection model. Thus, a long standing discrepancy in the literature is resolved, paving the way towards more accurate theoretical descriptions and hence knowledge-based control of microstructure evolution in biaxially textured thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.