Abstract
BackgroundAn HMG-CoA reductase inhibitor, fluvastatin, appears to act directly on the blood vessel wall to stabilize plaques in situ, agents that share this property have been termed vascular statins. MethodsWe investigated the effects of fluvastatin on endothelial nitric oxide synthase (eNOS) phosphorylation and expression, as well as terahydrobiopterin (BH4) metabolism, in human umbilical vein endothelial cells (HUVEC). ResultsFluvastatin was observed to enhance eNOS phosphorylation at Ser-1177 and Ser-633 through the PI3-kinase/Akt and PKA pathways, respectively. Inhibition of eNOS phosphorylation using inhibitors of these pathways attenuated acute NO release in response to fluvastatin. The mRNA of GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme of the first step of de novo BH4 synthesis, as well as eNOS, was upregulated in HUVEC treated with fluvastatin. In parallel with this observation, fluvastatin increased intracellular BH4. Pre-treatment of HUVEC with the selective GTPCH inhibitor, 2,4-diamino-6-hydroxypyrimidine, reduced intracellular BH4 and decreased citrulline formation following stimulation with ionomycin. Furthermore, the potentiating effect of fluvastatin was reduced by limiting the cellular availability of BH4. ConclusionsOur data demonstrate that fluvastatin phosphorylates and activates eNOS, and increases eNOS expression in vascular endothelial cells. In addition to modulating eNOS, fluvastatin potentiates GTPCH gene expression and BH4 synthesis, thereby increasing NO production and preventing relative shortages of BH4.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have